Prosens Technology

WT-8583\$

New Value Wireless Mouse Sensor

Description

The Prosens Technology WT-8583S is a new low power, small form factor optical mouse sensor. It has a brand new low-power architecture and automatic power management modes, along with the second generation optical lens WT-8511, making it ideal for value and mass market wireless mice.

The WT-8583S is capable of high-speed motion detection - up to 20ips and 4G. In addition, it has an on-chip oscillator and LED driver to minimize external components.

The WT-8583S along with the WT-8511 3'rd generation trim lens, LED clip, and HLMP-ED80 LED form a complete and compact mouse tracking system. There are no moving parts and this translates to high reliability and less maintenance for the end user. In addition, precision optical alignment is not required, facilitating high volume assembly.

The sensor is programmed via registers through a four-wire serial port. It is housed in an 8-pin staggered dual in-line package (iDIP).

Features

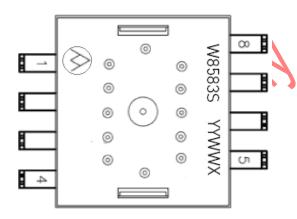
- O Low Power and the 3'rd Generation Optical Architecture
- O Small Form Factor
- 'Smart' LED Current Switching depending on surface brightness
- O High Speed Motion Detection up to 20ips and 2G
- External Interrupt Output for Motion Detection
- Internal Oscillator no clock input needed
- Selectable Resolution up to 1000cpi
- ⊙ Operating Voltage: 2.6 3.3V
- Two wire Serial Port Interface
- Minimal number of passive components

Applications

Value Wireless Optical Mice

Theory of Operation

The WT-8583S is based on Optical Navigation Technology, which measures changes in position by optically acquiring sequential surface images (frames) and mathematically determining the direction and magnitude of movement.


The WT-8583S contains an Image Acquisition System (IAS), a Digital Signal Processor (DSP), and a four wire serial port.

The IAS acquires microscopic surface images via the lens and illumination system. These images are processed by the DSP to determine the direction and distance of motion. The DSP calculates the Δx and Δy relative displacement values.

An external microcontroller reads and translates the Δx and Δy information from the sensor serial port into PS2, USB, or RF signals before sending them to the host PC.

reiminary)

Package Pinout

Figure 1. Device Pinout

<u>Pin</u>	Name	Type	<u>Description</u>
1	NC	OUT	Reserve for test mode. Must be kept floating
2	Motion	1/0	Motion detection (active low)
3	SDIO	IN	SPI bi-directional data
4	SCLK	OUT	SPI clock
5	LED	GND	LED control
6	VSS	PWR	Chip ground
7	VDD	PWR	Power supply for I/O and internal output
8	RSVD	OUT	Reserve for test mode. Must connect through a 1uF capacitor to ground

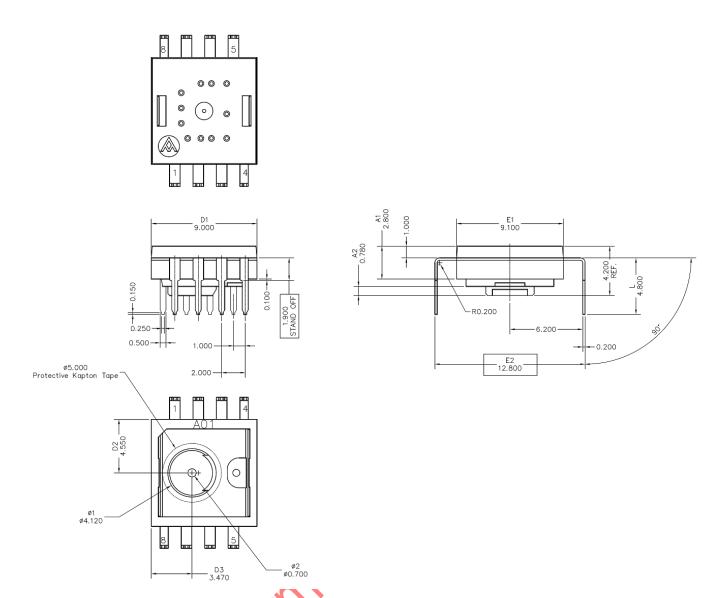


Figure 2. Package Outline Drawing

Overview of Optical Mouse Sensor Assembly

Prosens Technology provides an IGES file drawing de scribing the base plate molding features for lens and PCB alignment. The WT-8583S sensor is designed for mounting on a through-hole PCB. There is an aperture stop and features on the package that align to the lens. The WT-8511 lens provides optics for the imaging of the surface as well as the illumination of the surface at the optimum angle. Features on the lens align it to the sensor, base plate, and clip with the LED. The clip holds the LED in relation to the lens. The LED must be inserted into the clip and the LED leads formed prior to loading on the PCB.

The HLMP-EG3E LED is recommended for illumination.

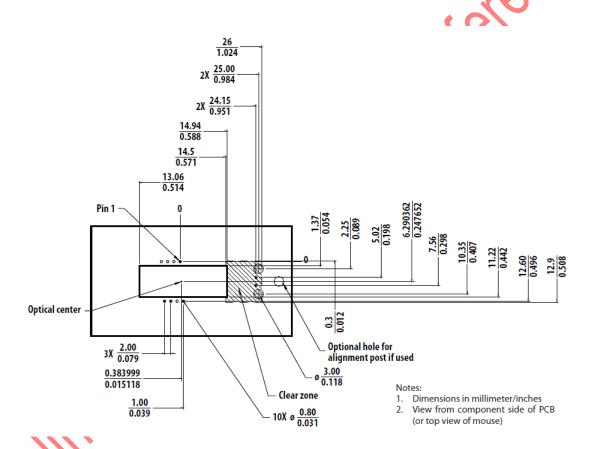
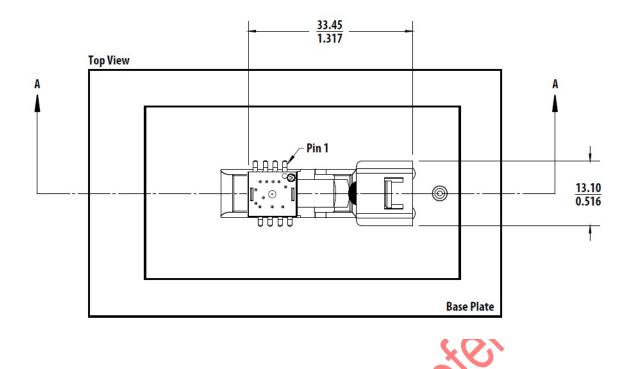
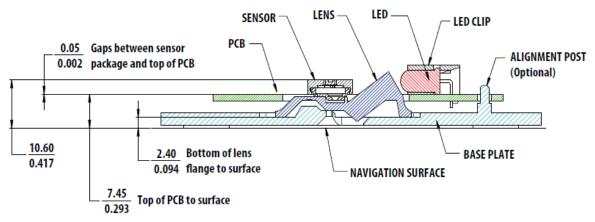
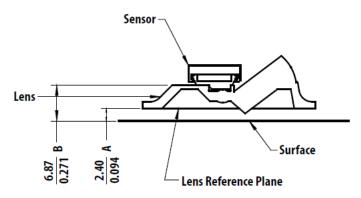




Figure 3. Recommended PCB Mechanical Cutouts and Spacing


CROSS SECTION SIDEVIEW

NOTE: Dimensions in mm/Inches

Important Note: Pin 1 of sensor should be located nearest to the LED

Figure 4. 2D Assembly Drawing of Sensor (Top and Side View)

Note:

- A Distance from object surface to lens reference plane
- B Distance from object surface to sensor reference plane

Figure 5. Distance from Lens Reference Plane to Tracking Surface (Z)

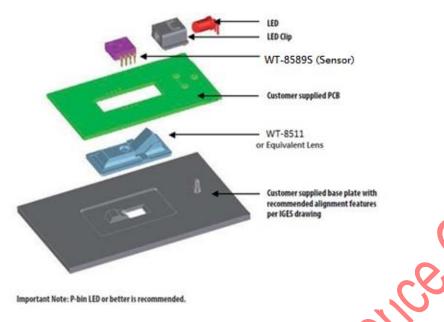


Figure 6. Exploded View of Assembly

PCB Assembly Considerations

- 1. Insert the sensor and all other electrical components into PCB.
- 2. Insert the LED into the assembly clip and bend the leads 90 degrees.
- 3. Insert the LED clip assembly into PCB.
- 4. Wave solder the entire assembly in a no-wash solder process utilizing solder fixture. The solder fixture is needed to protect the sensor during the solder process. It also sets the correct sensor-to-PCB distance as the lead shoulders do not normally rest on the PCB surface. The fixture should be designed to expose the sensor leads to solder while shielding the optical aperture from direct solder contact.
- 5. Place the lens onto the base plate.
- 6. Remove the protective Kapton tape from optical aperture of the sensor.

Care must be taken to keep contaminants from entering the aperture. Recommend not to place the PCB facing up during the entire mouse assembly process. Recommend to hold the PCB first vertically for the Kapton removal process.

- 7. Insert PCB assembly over the lens onto the base plate aligning post to retain PCB assembly. The sensor aperture ring should self-align to the lens.
- 8. The optical position reference for the PCB is set by the base plate and lens. Note that the PCB motion due to button presses must be minimized to maintain optical alignment.
- 9. Install mouse top case. There MUST be a feature in the top case to press down onto the PCB assembly to ensure all components are interlocked to the correct vertical height.

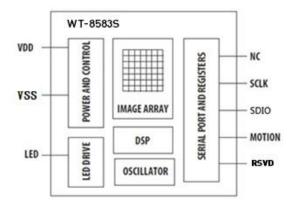


Figure 7. Block diagram of WT-8583S optical mouse

Design considerations for improving ESD Performance

The table below shows typical values assuming base plate construction per the Prosens Technology supplied IGES file and WT-8511 trim lens. Stand-off of the base plate shall not be larger than 5 mm.

Typical Value	Distance (mm)
Creepage	15.43 mm
Clearance	7.77 mm

Note that the lens material is polycarbonate or polystyrene HH30, therefore, cyanoacrylate based adhesives should not be used as they will cause lens material deformation

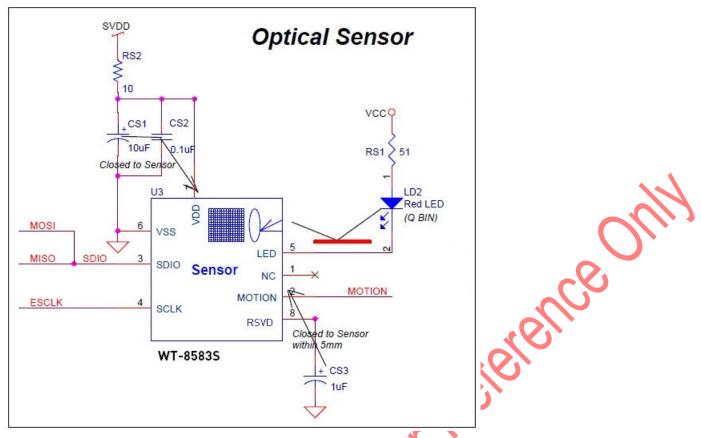
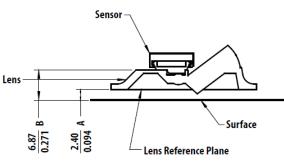


Figure 8. Sensor Circuitry

Regulatory Requirements

- Passes FCC B and worldwide analogous emission limits when assembled into a mouse with shielded cable and following Prosens Technology recommendations.
- Passes EN61000-4-4/IEC801-4 EFT tests when assembled into a mouse with shielded cable and following Prosens Technology recommendations.
- \odot UL flammability level UL94 V-0.


Electrical Specifications and Characteristics

Absolute Maximum Rating

Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Storage Temperature	T_{STR}	-40	-	85	ſC	
Operating Temperature	T_{opt}	-15		55	ſC	
Voltage Rating on Input	V _{IN}	-0.3	-	VDD+0.3	٧	
Voltage Rating on VDD		-0.3	-	3.3	٧	
ESD				2	ΚV	~~

Recommended Operating Conditions

Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Operating Supply Voltage	V_{supply}	2.6	3.0	3.3	V	
Operating Temperature	T_{opt}	0		40)C	
Supply Noise	V _{NOISE}			100	m۷	
Resolution	R	400		1000	CPI	
Serial Port Clock Frequency	F _{SCK}			3	MHz	
Frame Rate	FR		1	2400	FPS	
Speed	Speed	X	5	20	IPS	
Acceleration	А	1		2	G	At the normal mo
						de and 2400 fps.

- Note: A Distance from object surface to lens reference plane B Distance from object surface to sensor reference plane

Figure 9. Distance from Lens Reference Plane to Tracking Surface (Z)

AC Characteristics

Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Power up time	T_{pup}	40	50	60	ms	
SPI re-sync. low level time	T _{RSYNCL}	1			us	
SPI re-sync. time	T _{RSYNC}	1.7			ms	

DC Characteristics

Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Supply current at normal mode	I _{nor}		4		mA	VDD = 3.0V
						T = 25 degree
Supply current at sleep 1 mode	I _{slp1}		200		uA	VDD = 3.0V
				• •		T = 25 degree
Supply current at sleep 2 mode	I _{slp2}		60	XV	uA	VDD = 3.0V
				S		T = 25 degree
Supply current at power down m	I_{pd}		10		uA	VDD = 3.0V
ode				•		T = 25 degree
Type: MOTION, SCLK, SDIO		X	O_{\cdot}			
Input Voltage High	V_{IH}	2.0			V	VDD = 3.0V
Input Voltage Low	VIL	<i>3</i> ′		0.8	V	VDD = 3.0V
Output Voltage High	V _{OH}	2.4			٧	VDD = 3.0V
	10					I _{OH} = 2mA
Output Voltage Low	V_{OL}			0.4	V	VDDI = 3.0V
XO.						$I_{OL} = 2mA$
Type: LED						
Output Voltage Low	$V_{\text{OL-LED}}$			380	mV	VDD = 3.0V
						I _{oL} = 25mA

Serial Peripheral Interface (SPI)

The serial peripheral interface is used by an external controller to read/write the register blocks and OPMS registers inside WT-8583S.

SCLK (Serial Clock)

This serial clock line is always generated by the external controller.

SDIO (Serial Data)

The serial data line is used by the external controller to read and write data.

Write Operation

Write operation, data going from the external controller to WT-8583S, is always initiated by the external controller and consists of two-byte message blocks. The first byte of a message block contains the address (7 bits) and has a '1' as its MSB to indicate data direction. The second byte contains the data to be written. The SDIO data transfer is synchronized by SCLK. The external controller changes SDIO on falling edges of SCLK. The WT-8583S reads SDIO on rising edges of SCLK. The write operation protocol is illustrated in **Figure**. 10.

Figure. 10 SPI Write Operation

Read Operation

Read operation, data going from WT-8583S to the external controller, is always initiated by the external controller and consists of two-byte message blocks. The first byte of a message block contains the address written by the external controller and has a '0' as its MSB to indicate data direction. The second byte contains the data and is driven by WT-8583S. The SDIO data transfer is synchronized by SCLK and SDIO is changed by WT-8583S on falling edges of SCLK. The external controller reads SDIO data on every rising edge of SCLK. The SDIO pin of the External Controller must go to a high Z state after the last address bit (A0) has been sent by the external controller. And the SDIO pin of WT-8583S will go to high Z state after the last data bit has been output. The read operation protocol is illustrated in **Figure**.

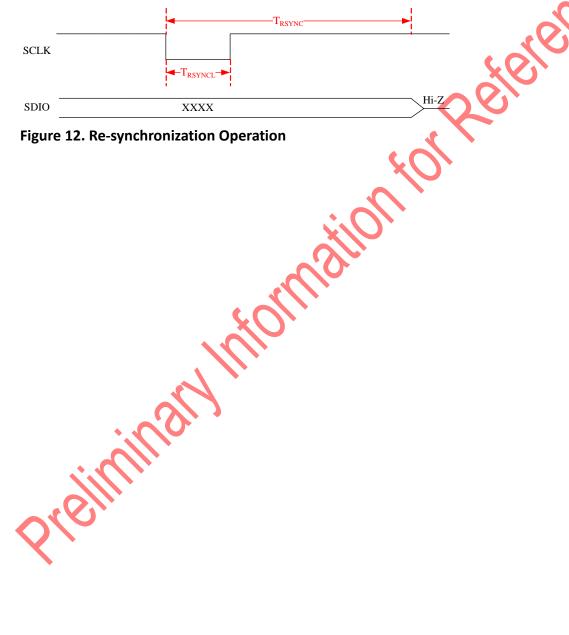



Figure. 11 SPI Read Operation

Re-synchronization

If the external controller and the WT-8583S are out of synchronization, data access from/to the registers will be incorrect. In such a case, external controller drives the SCLK to '0' for at least T_{RSYNCL} time period, and then drives the SCLK to '1' for at least T_{RSYNC} - T_{RSYNCL} time period to get WT-8583S synchronized with the external controller.

Registers

PIDL: Product ID Low Byte (\$0000h)

Bit	Default	R/W	Name	Description
B7:	30h	R	PIDL	Product identifier low byte. It can be read across serial
0				communication interface to check if the link is OK.

PIDH: Product ID High Byte (\$0001h)

Bit	Default	R/W	Name	Description		
B7:	50h	R	PIDH	Product identifier high byte. It can be read across ser	ial	
0				communication interface to check if the link is OK)	

M_Status: Motion Status (\$0002h)

Bit	Default	R/W	Name	Description
B7	0	R	MOTION	Motion flag since last report: pote1
				0: No motion
				1: Motion occurred
В6	0	R		Reserved
B5	0	R		Reserved
B4	0	R	DYOVF	Motion at Y direction overflow flag: note1
				0: No overflow
				1: Overflow has occurred
В3	0	R	DXOVF	Motion at X direction overflow flag: note1
				0: No overflow
			XO.	1: Overflow has occurred
B2	1	R	R_MIR[2]	Resolution in count per inch.
B1	0	R	R_MIR[1]	The data is copied from the B2:0 of Config register (\$0006h).
В0	0	R	R_MIR[0]	

Note1: When both Delta_X and Delta_Y are overflowed with value to be -128 (0x80), only DXOVF and DYOVF is set. The Motion pin/register is not active.

Delta_X: X movement (\$0003h)

Bit	Default	R/W	Name	Description
B7:	00h	R	Delta_X	X movement since last report.
0				Reading this register will also clear its content. The moveme nt report range is from -128 to 127. If the total movement is o

Delta_Y: Y movement (\$0004h)

Bit	Default	R/W	Name	Description
B7:	00h	R	Delta_Y	Y movement since last report.
0				Reading this register will also clear its content. The moveme
				nt report range is from -128 to 127. If the total movement is o
				verflowed, DYOVF becomes 1.

Op_Mode: Operation Mode (\$0005h)

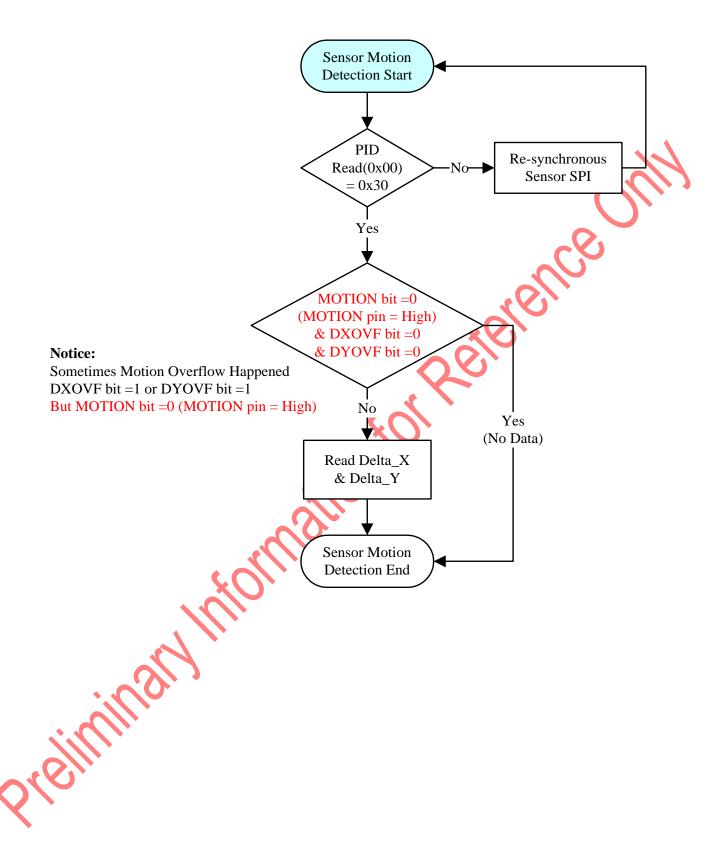
Bit	Default	R/W	Name	Description
В7	1	А	LEDsht_E	LED shutter enable:
			n	0: Disable
				1: Enable
В6	0	R		Reserved
B5	1	R		Reserved
В4	1	Α	Slp_En	Sleep mode enable:
				0: Disable
				1: Enable
В3	1	Α	Slp2_En	Sleep mode 2 enable:
				0: Disable
				1: Enable
В2	0	Α	Slp2_Mu	Enter sleep mode 2 manually.
В1	0	Α	Slp1_Mu	Enter sleep mode 1 manually.
В0	0	Α	Wakeup	Wake up from sleep mode manually.

Config: Configuration (\$0006h)

Bit	Default	R/W	Name	Description
В7	0	А	M_RST	Manual reset for whole chip:
				0: Disable
				1: Enable
V				
В6	0	Α	Mot_0Sel	MOTION pin output function select.
				0: Level sensitive. If MOTION pin is at low level, it means that
				Delta_X and/or Delta_Y register has data. The mouse controll
				er can read M_Status, Delta_X and Delta_Y sequentially to ge
				t the motion result. After the Delta_X/Delta_Y registers have
				been read, Delta_X/Delta_Y registers will be cleared (zero) a
				nd the level of MOTION pin will become high.
				1: Edge sensitive. If there is motion being detected, MOTION p

				in will generate one low pulse to inform the mouse controller .
B5	0	R		Reserved
B4	0	R		Reserved
В3	0	Α	PD_En	Power down mode enable
				0: Disable
				1: Enable
B2	1	Α	RES[2]	Output resolution setting.
B1	0	Α	RES[1]	000: 400
В0	0	Α	RES[0]	001: 500
				010: 600
				011: 800
				100: 1000
				101: Reseved
				110: Reserved
				111: Reserved

Img_Qua: Image Quality (\$0007h)


Bit	Default	R/W	Name	Description
В7	00h	R	lmg_Qua	Image Quality register indicates the quality level of the captur
0				ed images.

Op_State: Operation State (\$0008h)

Bit	Default	R/W	Name	Description
В7	0	R	80,	Reserved
В6	0	R		Reserved
B5	0	R		Reserved
В4	0	R		Reserved
В3	0	R	Slp_St	Sleep state. This bit is e
				0: Sleep timer is at sleep1 state
				1: Sleep timer is at sleep 2 state
B2	0	R	Op_St[2]	Operating state of the WT-8583D
B1	0	R	Op_St[1]	000: Normal Mode
B0	0	R	Op_St[0]	001: Entry sleep 1 processing
				100: Sleep mode (See Slp_St for more information)
				Others: Reserved for future use

Prelininary Information for Reference Only

Sensor Motion Detection Flow Chart

Prosens Technology and the logo are trademarks of Prosens Technology in Taiwan, Republic of China, and other countries. Data is subjected to be changed. All rights reserved.

